Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 8(14): 7569-7578, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539152

RESUMO

The synthesis of three novel tetracyclosiloxane monomers modified either with a nitroaniline (NA) or with a Disperse Red 1 (DR1) push-pull group and their ring opening polymerization reaction in the presence of tetramethylammonium hydroxide are presented. The prepared monomers and polymers were characterized by different spectral methods and gel permeation chromatography. For the crystalline monomers, the structures were further proven by single crystal X-ray diffraction. Dynamic scanning calorimetry shows that the polymers that carry NA groups have a glass transition temperature (T g) well below room temperature (RT), while the one that carries DR1 groups melts at 55 °C. The transition temperatures have a strong effect on permittivity as indicated by broadband impedance spectroscopy measurements conducted at different temperatures and frequencies. The polymers modified with NA groups have a high permittivity (maximum value of 17.3) at RT, suggesting the polar groups to be mobile and orientation polarization to be effective. However, the polar groups of the polymer modified with DR1 are frozen and thus cannot contribute to the permittivity via orientation polarization. Consequently, the permittivity is only 8.8 at RT, but increases to 22 above the melting temperature, where the dipoles are mobile. Because of the high dielectric permittivity and rather low T g, the polymers modified with NA are attractive as active dielectric materials in actuators, capacitors, and stretchable electronics, whereas the polymer modified with DR1 may be of interest in nonlinear optical devices.

3.
Inorg Chem ; 56(19): 11552-11564, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28895725

RESUMO

Interest in hybrid organic-inorganic lead halide compounds with perovskite-like two-dimensional crystal structures is growing due to the unique electronic and optoelectronic properties of these compounds. Herein, we demonstrate the synthesis, thermal and optical properties, and calculations of the electronic band structures for one- and two-layer compounds comprising both cesium and guanidinium cations: Cs[C(NH2)3]PbI4 (I), Cs[C(NH2)3]PbBr4 (II), and Cs2[C(NH2)3]Pb2Br7 (III). Compounds I and II exhibit intense photoluminescence at low temperatures, whereas compound III is emissive at room temperature. All of the obtained substances are stable in air and do not thermally decompose until 300 °C. Since Cs+ and C(NH2)3+ are increasingly utilized in precursor solutions for depositing polycrystalline lead halide perovskite thin films for photovoltaics, exploring possible compounds within this compositional space is of high practical relevance to understanding the photophysics and atomistic chemical nature of such films.

4.
Sci Rep ; 6: 29021, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27366866

RESUMO

Materials response to electric or magnetic fields is often dominated by the dynamics of dipoles in the system. This is for instance the case of polar dielectrics and many transition metal compounds. An essential and not yet well understood fact is that, despite their structural diversity, dielectric solids exhibit a striking universality of frequency and time responses, sharing many aspects with the behaviour of spin-glasses. In this article I propose a stochastic approach to dipole dynamics within which the "universal frequency response" derives naturally with Debye's relaxation mechanism as a special case. This formulation reveals constraints to the form of the relaxation functions, which are essential for a consistent representation of the dynamical slowing-down at the spin-glass transition. Relaxation functions with algebraic-, and exponential-tails, as well as damped oscillations, are shown to have a unified representation in which the stable limit of the distribution of waiting-times between dipole flips determines the present type of dynamics.

5.
Angew Chem Int Ed Engl ; 54(33): 9606-9, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26110509

RESUMO

YAlC was prepared by a flux method. It crystallizes as a partially filled-up TlI structure, showing remarkable structural aspects at the border between Zintl phases and intermetallics. This novel ternary aluminide-carbide exhibits a unique one-dimensional multi-center bond and a polyacetylene-related aluminum carbide substructure. The different functionalities of aluminum and of yttrium are quite remarkable. While the latter behaves more like a trivalent ion, aluminum contributes considerably to covalent bonding with carbon. Still yttrium d states contribute, but hardly in a directed manner.

6.
Inorg Chem ; 54(3): 710-2, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25423353

RESUMO

A novel ternary aluminum carbide, Y(3)AlC(3), has been synthesized under application of a lithium metal flux at high temperature (1523 K). Single-crystal structure determination of this compound revealed a new structure type with the Wyckoff sequence 2j3e and remarkable structural features at the border between Zintl and intermetallic phases. The puzzling bonding structure of Y(3)AlC(3) is analyzed with the aid of electronic structure calculations (energy bands and the electron localization function).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...